Demonstration of Plasma Assisted Waste Conversion to Gas

Completed Technology Project (2017 - 2019)

Project Introduction

The goal is to demonstrate high fidelity mission waste simulant conversion with a proprietary DC plasma torch, a different approach from industry which uses higher powers not acceptable on the smaller scale of space missions. The baseline carrier gas will be 100% air, then the feasibility of alternate carrier gases (CO2, N2, and hydrocarbon product gas recirculation) will be evaluated. A CO2 carrier gas is ideal since it is a byproduct of human metabolic activity (available on ISS), and 95% of the Mars atmosphere. A semi-closed loop system could be achieved if the product gases produced by the trash conversion itself could be used as a carrier gas. As this this technology advances it would eventually be infused into future AES projects. The next steps would be to demonstrate up to three down-selected technologies in the combustion integration rack for microgravity experiments on board the ISS, and then build a flight unit for converting mission waste into gas to reduce volume, odor, and provide sterilization of waste.

Anticipated Benefits

Demonstrate plasma assisted waste conversion to gas as a possible down-select technology for waste processing on board space vehicles and space habitats for long duration missions. Reducing waste to an inert gas for venting, or repurposing, is a necessary means of maintaining human presence on any extraterrestrial land mass, cislunar station, or long-duration mission. NASA does not currently have a determined mature waste conversion system (or down selected technology) for future long duration or habitat missions

Primary U.S. Work Locations and Key Partners

Demonstration of Plasma Assisted Waste Conversion to Gas

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Website:		
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Center Innovation Fund: KSC CIF

Demonstration of Plasma Assisted Waste Conversion to Gas

Completed Technology Project (2017 - 2019)

Organizations Performing Work	Role	Туре	Location
★Kennedy Space Center(KSC)	Lead Organization	NASA Center	Kennedy Space Center, Florida
Applied Plasma Technologies, Corp.	Supporting Organization	Industry Women-Owned Small Business (WOSB)	

Primary U.S. Work Locations

Florida

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Kennedy Space Center (KSC)

Responsible Program:

Center Innovation Fund: KSC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Barbara L Brown

Principal Investigator:

Anne J Meier

Technology Maturity (TRL)

Center Innovation Fund: KSC CIF

Demonstration of Plasma Assisted Waste Conversion to Gas

Completed Technology Project (2017 - 2019)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.2 Mission
 Infrastructure,
 Sustainability, and
 Supportability
 - ☐ TX07.2.1 Logistics Management

Target Destinations

Earth, Mars, Outside the Solar System

